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Supplementary Methods 

Molecules and Solubility 

Even for identical chemical names, the SMILES strings found in various well-regarded databases 

may imply subtly different chemical structures. Typically, variants may differ in stereochemistry, 

protonation state and in the treatment of aromaticity which is sometimes expressed as alternating 

single and double bonds, rather than as canonically aromatic structures. Such variations affect the 

descriptors calculated by CDK. 

Crystal structure and gas-phase calculations 

 

The Buckingham potential is: 

         
    ∑       (       )  

   

   
 

       

 

Equation S1. Buckingham potential. 

where i and k are atoms in molecules M and N, with the fitted values Aik, Bik and Cik being 

characteristic of the interaction between the relevant atom types and Rik  being the distance separating 

atoms i and k. Aik, Bik and Cik are fitted to experimental results.  

Geometry optimizations were carried out in duplicate using M06-2X/6-31G* and HF/6-31G*, 

starting from hydrogen-normalized versions of the crystal structure monomer geometries.
1
 All 

calculations were done using G09’s “ultrafine” integral grid (containing 99 radial shells and 590 

angular points per shell) because it is known that the M06-2X functional is sensitive to integral grid 

spacing.
2
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The Helmholtz free energy free energy is calculated as follows: 

    
 

 
∑      ∑   (    

   
  )

  

 

Equation S2. Calculation of the Helmholtz free energy in DMACRYS. 

 

where F is the Helmholtz free energy, U is the energy of the stationary lattice, νi  are the frequencies 

of the normal modes, k is the Boltzmann constant and T is the absolute temperature.
3
 

(
  

  
)
 
    

Equation S3. Calculation of entropy from the Helmholtz free energy. 

 

The partial derivative of the Helmholtz free energy with respect to temperature at constant volume 

gives the negative of the entropy. 

Machine learning regression models: 

Partial Least Squares Regression (PLSR)  

In the given dataset of n observations (druglike molecules), the dataset is D = {(x1,y1 ),…,(xn,yn )}, 

where xi (i = 1, … , n) is a vector of descriptors and  yi is the property or activity of interest, here log S 

[Figure 1 A]. The given data D are split into training and test sets, where the training set of X
 
 is used 

in order to fit to the PLSR model. The predictions for new observations are based on the training set 

by decomposing the data into singular vectors. For this, first, the data matrices X and Y are 

decomposed using singular value decomposition of their cross product matrix S, where S = X
T
 Y. The 

singular value decomposition of S is SVD(S) = WC
T
, which is the main analytical tool in PLSR. In 

PLSR, this kind of decomposition is also known as eigenvalue decomposition.
4
 The left (i.e. W) and 

right (i.e. C) singular vectors are used as weight matrices W and C of X
 
and Y, respectively, to obtain 
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scores T (T = X W) and U (U = YC) that explain the data [Figure S1 A]. It is not necessary to calculate 

the score matrix of Y in regression analysis, but it is still often used for interpretation. Next, loadings 

(i.e. P) are calculated by regressing against the same vector T, P = X
T
 T. These matrices will be 

normalised by subtracting the loadings from the original data matrix. The complete steps are iterative 

in order to retrieve the estimate of the components. Afterwards the scores T are used to calculate the 

matrix of regression coefficients B (as in Equation S4), which is converted back to the realm of the 

original variables by pre-multiplying by R; R = [W(P
T
 W) 

(-1)
]. 

B=R (T
T
 T) 

(-1)
 T

T
 Y 

Equation S4. Equation for the regression coefficients in PLSR. 

Random Forest Regression (RF) 

In the given dataset D we have n instances, here molecules, used for the tree-building process that 

constitutes the training set. The random forest is an ensemble of decision trees {T1(X),…, Tb(X)}, each 

tree generated by stochastic recursive partitioning of a bootstrap sample of the training set. As the 

molecules progress through the tree, they are partitioned into increasingly homogeneous groups, so 

that each terminal node of the decision tree is associated with a group of molecules with similar 

solubility. Each split within a tree is created based on the best partitioning of the bootstrap sample, 

according to the Gini criterion, that is possible using any of a randomly chosen subset of mtry 

descriptors. This random subset is freshly chosen for each node.  If ntree, the number of trees in the 

forest, is held constant then mtry is the only parameter that needs to be optimised. For each tree, 

approximately one third of the training set molecules do not appear in that tree’s bootstrap sample, 

and constitute the so called out-of-bag data; conversely, every molecule is out-of-bag for about a third 

of the trees.  

In the prediction phase the test molecules are passed through the trees built from the training data. 

Each tree provides the output   
    

    ( ) ,…,   
    

    ( ), where    
    

 contains the 
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prediction for the test molecules by the b
th
 tree. Lastly, the outputs of each tree for each given 

molecule are averaged to produce the random forest’s final prediction of log S for that compound.  

Different kinds of experimental design are possible. In one possible design, only out-of-bag 

predictions are carried out and each molecule is predicted only by those trees for which it was not part 

of the bootstrap training sample. In another design, where the test set is entirely external, the trees are 

constructed from the training data and every tree will be used to predict every test compound. In the 

10-fold cross-validation design used in this work, a random forest is constructed from nine of the 10-

folds and used to predict the solubilities for the molecules constituting the tenth fold; this process is 

then repeated cyclically with each fold successively being predicted by a random forest constructed 

from the other nine.  

Support Vector Regression (SVR) 

To compute the linear regression of the given training data X, SVR approximates the function in the 

following way:  (  )    
     , where ω is a vector of weights and B is the constant coefficient. 

In order to estimate the function’s deviation from the true one, SVR uses a loss function 

 (   (   )  ) that was introduced by Vapnik [Figure S1 B]. SVR uses an  -insensitive loss function 

in order to capture the deviation of  (   ) from the actual yi for the complete training set; this 

deviation should be at most   in magnitude. Moreover, the SVR algorithm tries to reduce model 

complexity by minimizing the weights       . This is a very stringent rule; it implies that a function   

exists that approximates (   ) with precision  . This is not always the case, where the situation is not 

so stringent, slack variables, i,  
 
; i = 1,…, n, are introduced to provide flexibility to the model for 

each of the n molecules.
5
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 Figure S1. (A) PLSR; (B) SVR with a soft margin loss function. 
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Machine Learning Model Parameters 

 

1. For PLSR the only parameter that was optimised is the number of components ‘ncomp’ which 

ranged from 1-20. 

2. In RF if ntree, the number of trees in the forest, is held constant then mtry is the only 

parameter that needs to be optimised. The range of parameters are: ‘mtry’ (2-123) and ‘ntree’ (set at: 

500) 

3. In SVR we used the radial basis kernel function where two parameters play important roles: 

the capacity parameter C (for which we tried twenty different values varying between 0.25 and 

131072), and sigma (set at: 0.0112). 

For parameter optimisation we performed 10-fold cross-validation within the training set. The 

parameter optimisation was done using the CARET package. 

Statistical Test Formulas 

      √
 

 
∑(  

          )
 

 

   

 

   

(

 
∑(       ̅)(       ̅)

√∑(       ̅)
 ∑(       ̅)

 

)

 

 

 

Equation S5. RMSE and R
2
 equations (R

2
 here is the square of the Pearsons correlation coefficient 

not the coefficient of determination). Where n is the number of molecules,      is the observed output 

and       is the predicted output,  ̅ is the mean value of x,  ̅ is the mean value of y. 

 

Statistical Significance test 

The permutation test is widely used technique in various research areas such as in bioinformatics 

and chemoinformatics  where the question is how well algorithm A performed compared with 

algorithm B on a particular problem characterised by a data set D.
6
  By using the permutation test one 
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can calculate exact P-values for the commonly used 10-fold cross-validation methods by using fewer 

assumptions about the distribution of a paired difference. In this study we are using a permutation test, 

7
 to test for significantly different performance (via RMSE) between the two regression models by 

their P-values.  

   
 

 
 

Equation S6. P value 

 

where n is the number of permutations of the mean difference in the performance of two regression 

models that can be more extreme than the observed mean difference and N is the total number of 

possible reassignments of the paired differences given the results. In more detail, the procedure 

consists of the following steps: 

1. A given paired-difference (  ) of RMSE scores obtained by different regression models is 

given by    (  
    

 )  (  
    

 )     (  
     

  ) where   
  is the RMSE scores for test set 

predictions made by model A for each fold (1 … 10)  in the 10-fold cross-validation. 

2. For this statistical test, 1024 permutations are created via all 2
10 

combinations:    

 (  
    

 )  (  
    

 )     (  
     

  ) . 

3. The rank of true difference in the performance    is used as an indicator of the p-values 

among the 1024 permutations. The P-value is computed as:     
 

    
  where n is the number of 

permutations which have |  |       . 

Variable Importance 

The variable importance can be calculated with a model-dependent or model-independent method. 

A model-dependent method has the advantage of using information from the model performance, for 

example in algorithms such as Random Forest. Here, we use the CARET  package to evaluate the 

variable importance “varImp”  for Random Forest. 
8
 

9
 Irrespective of the method of calculation, the 

variable importance scores are scaled to a maximum of 100. The variable importance is calculated as 

the average difference between a conventional out-of-bag prediction and a second “noised up” 
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prediction in which a single descriptor has its values permuted between molecules. The most 

important descriptor is then the one giving the largest reduction in accuracy when noised up. The 

variable importance for the descriptors used in this study are in Table S14 and definitions of the CDK 

descriptor names can be found in
10

. 

Solubility Challenge Dataset 

As a benchmark, we also used our descriptor-based methodology retrospectively to replicate the 

Solubility Challenge itself. We used the Solubility Challenge  dataset as a benchmark in this work to 

directly compare our method to others and to judge the relative difficulty of our 100-molecule dataset 

against that of the standard Solubility Challenge  set. The Solubility Challenge  dataset comes from 

work by Llinas et al.,
11

 where solubilities of 122 compounds are reported from the CheqSol method. 

The molecules were selected on the basis of commercial availability and must contain an ionisable 

group. Hence we trained our models with the 94 training set solubilities from the original Solubility 

Challenge,
11-12

 and tested on the 28 molecules of the test set (more specifically, there are 94 useable 

quantified solubilities amongst the 100 molecules of the original training set, and 28 amongst the 32 

compounds in the canonical test set). ChemSpider SMILES were used for 90 of the training set 

molecules and for all 28 test set compounds; for 5-bromogramine, cimetidine, pindolol and 

phenobarbital we instead took the SMILES from the Solubility Challenge  web site
12a

 in order to 

obtain the desired neutral protonation state. Since 60 molecules of the training set and 24 of the test 

set had no suitable crystal structure in the CSD, we could not calculate energy descriptors for the 

Solubility Challenge  set. 
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Crystal Structure, Molecule Name and Molecular Structure 

Table S1: Molecular structures, CSD refcodes and chemical names of the 100 molecules used in this study. The SMILES for this DLS100 dataset can be 

found in the zip file of solubility datasets and scripts that forms part of the Supporting Information.  
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Number Crystal 

structure 

Molecule name Molecule structure 

1 TAYGAC Nadolol 

 
2 BHHPHE Salbutamol 

 
3 IMITON Propranolol 
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4 METPRA Metoclopramide 

 
5 NIFLUM10 Niflumic acid 

 
6 BOMDUC Quinidine 

 



15 
 

7 ADENOS10 Adenosine 

 
8 FLUBIP Flurbiprofen 

 
9 FOGVIG02 Famotidine 

 



16 
 

10 CIMETD Cimetidine 

 
11 OXYTET Oxytetracycline 

 
12 CEZVIN (RS)-Atenolol 

 



17 
 

13 PINDOL Pindolol 

 
14 PERPAZ Perphenazine 

 



18 
 

15 DIZPAM10 Diazepam 

 
16 AMXBPM10 Trimethoprim 

 
17 WALPIJ Atropine 

 



19 
 

18 THEXPL Trihexyphenidyl 

 
19 TICTUU Thebaine 

 



20 
 

20 MVERIQ01 Papaverine 

 
21 FPAMCA Flufenamic acid 

 
22 KHELIN Khellin 

 



21 
 

23 CUTPEN Sertraline 

 



22 
 

24 DOHREX Sulindac 

 
25 LDOPAS03 L-DOPA (Levodopa) 

 



23 
 

26 ZIDLED Mifepristone 

 
27 CHORLH01 Chloral Hydrate 

 
28 XYANAC Mefenamic acid 

 



24 
 

29 IBPRAC01 Ibuprofen 

 
30 NDNHCL01 Clozapine 

 
31 JAKGEH Pentoxifylline 

 



25 
 

32 GRISFL Griseofulvin 

 
33 JODTUR01 Isoproturon 

 
34 PHTHAC01 Phthalic acid 

 



26 
 

35 ZZZPUS02 Tolbutamide 

 
36 SUVGUL Gliclazide 

 
37 ZZZTSE03 Codeine 

 



27 
 

38 LEKMET Indoprofen 

 
39 ANTPYR10 Antipyrine 

 
40 IPMEPL Thymol 

 
41 HODHIS Fluometuron 

 



28 
 

42 PERLEN05 Perylene 

 
43 CMAPTX Chlorprothixene 

 
44 WAMXUD Linuron 

 



29 
 

45 SIKLIH01 Diclofenac 

 
46 FICJAC Alclofenac 

 
47 TRIPHE11 Triphenylene 

 



30 
 

48 AMBNAC04 4-Aminobenzoic acid 

 
49 PROGST12 Progesterone 

 
50 COYRUD11 Naproxen 

 



31 
 

51 DHANQU06 1,8-

Dihydroxyanthraquinone 

 
52 BENZAC02 Benzoic acid 

 
53 NETIND01 Norethisterone 

 



32 
 

54 NAPHOL01 1-Naphthol 

 
55 SLFNMD01 Sulfamethazine 

 
56 NICOAC02 Nicotinic acid 

 
57 ESTRON14 Estrone 

 



33 
 

58 AMSALA01 4-Aminosalicylic acid 

 
59 CLPHUR02 Diuron 

 
60 COCAIN10 Cocaine 

 



34 
 

61 SALIAC Salicylic acid 

 
62 PYRAZB21 Phenacetin 

 
63 CLMPCL02 Chloramphenicol 

 
64 GODTIC Equilin 

 



35 
 

65 TCHLBZ 1,3,5-trichlorobenzene 

 
66 PHYDAN01 5,5-Diphenylhydantoin 

 
67 PYRENE07 Pyrene 

 



36 
 

68 CABCIR01 Thiamphenicol 

 
69 ZZZUEE04 Strychnine 

 
70 BZAMID02 Benzamide 

 



37 
 

71 PHBARB09 phenobarbital 

 
72 SALMID07 Salicylamide 

 
73 ATDZSA Acetazolamide 

 
74 MNIMET Metronidazole 

 



38 
 

75 HXACAN04 Paracetamol 

 
76 CORTIC Corticosterone 

 



39 
 

77 IVUQOF Fluconazole 

 
78 NALIDX01 Nalidixic acid 

 



40 
 

79 DHPRTO02 Cortisone 

 
80 ACANIL01 Acetanilide 

 
81 EPHPMO Primidone 

 



41 
 

82 SLFNMB01 Sulfamethoxazole 

 
83 ALOPUR Allopurinol 

 
84 KEMDOW Guanine 

 
85 PYRZIN Pyrazinamide 

 



42 
 

86 DAPSUO03 Dapsone 

 
87 CYTSIN01 Cytosine 

 
88 THYMIN01 Thymine 

 
89 SULDAZ01 Sulfadiazine 

 



43 
 

90 URICAC Uric acid 

 
91 FURACL02 5-Fluorouracil 

 
92 THALID03 Thalidomide 

 
93 SLFNMG01 Sulfacetamide 

 



44 
 

94 URACIL Uracil 

 
95 HCSBTZ04 Hydrochlorothiazide 

 
96 SULAMD01 Sulfanilamide 

 



45 
 

97 SAXFED Glipizide 

 



46 
 

 

98 LABJON01 Nitrofurantoin 

 
99 PTERID11 Pteridine 

 
100 EWUHAF01 Hydroflumethiazide 
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Conversion of Experimental and Calculated Values to Log S 

For experimental solubility values, log S is found as follows: 

         (                   ) 

Equation S7. Log S (units referred to mol/L) 

 

We convert the free energy of solution to log S values: 

      
          
        

 

Equation S8. Theoretical definition. 

 

where R is the universal gas constant and T is the absolute temperature. 

25 Molecule Dataset  

 

Chart S1: 25 molecule dataset predictions SMD(HF). 
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Crystal 

structure 

Chemical name SMILES 

ALOPUR Allopurinol c1c2c([nH]n1)ncnc2O 
AMBNAC04 4-Aminobenzoic acid O=C(O)c1ccc(N)cc1 
AMXBPM10 Trimethoprim COc1cc(cc(c1OC)OC)Cc2cnc(nc2N)N 
BENZAC02 Benzoic acid c1ccc(cc1)C(=O)O 
BZAMID02 Benzamide c1ccc(cc1)C(=O)N 
COCAIN10 Cocaine CN1[C@H]2CC[C@@H]1[C@H]([C@H](C2)OC(=O)c

3ccccc3)C(=O)OC 
COYRUD11 Naproxen C[C@@H](c1ccc2cc(ccc2c1)OC)C(=O)O 
DHANQU06 1,8-Dihydroxyanthraquinone c1cc2c(c(c1)O)C(=O)c3c(cccc3O)C2=O 

EPHPMO Primidone O=C1NCNC(=O)C1(c2ccccc2)CC 
ESTRON14 Estrone O=C4[C@]3(CC[C@@H]2c1ccc(O)cc1CC[C@H]2[C

@@H]3CC4)C 
HXACAN04 Paracetamol CC(=O)Nc1ccc(cc1)O 
IBPRAC01 Ibuprofen CC(C)Cc1ccc(cc1)C(C)C(=O)O 
IVUQOF Fluconazole c1cc(c(cc1F)F)C(Cn2cncn2)(Cn3cncn3)O 

JODTUR01 Isoproturon O=C(Nc1ccc(cc1)C(C)C)N(C)C 
LABJON01 Nitrofurantoin O=[N+]([O-])c2oc(/C=N/N1C(=O)NC(=O)C1)cc2 
NAPHOL01 1-Naphthol Oc2cccc1ccccc12 
NDNHCL01 Clozapine CN1CCN(CC1)C2=Nc3cc(ccc3Nc4c2cccc4)Cl 
NICOAC02 Nicotinic acid c1cc(cnc1)C(=O)O 
NIFLUM10 Niflumic acid FC(F)(F)c1cc(ccc1)Nc2ncccc2C(=O)O 

PINDOL Pindolol CC(C)NCC(O)COc1cccc2[nH]ccc12 
PTERID11 Pteridine n1c2c(ncc1)ncnc2 
PYRENE07 Pyrene c1cc2ccc3cccc4c3c2c(c1)cc4 

SALIAC Salicylic acid c1ccc(c(c1)C(=O)O)O 
SIKLIH01 Diclofenac c1ccc(c(c1)CC(=O)O)Nc2c(cccc2Cl)Cl 
XYANAC Mefenamic acid O=C(O)c2c(Nc1cccc(c1C)C)cccc2 

 

Table S2: Names, CSD refcodes and SMILES for the 25 molecules in dataset DLS-25.
13

 The full 

SMILES dataset can be found in the zip file of solubility datasets and scripts that forms part of the 

Supporting Information.  
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Chart S2: 75 molecule dataset predictions SMD(HF). 

 

 

Chart S3: 100 molecule dataset predictions SMD(HF). 
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Chart S4: 25 molecule dataset predictions DFT SMD(M06-2X). 

 

Chart S5: 75 molecule datset predictions DFT SMD(M06-2X). 
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Chart S6: 100 molecule dataset prediction DFT SMD(M06-2X). 

Supplementary Results 

R2 results 

Informatics Descriptors Scaled by mean / stdev 
± stdev 

Scaled by PCA ± stdev Raw data ± stdev 

SVR 0.51 ± 0.02 0.46 ± 0.03 0.46 ± 0.06 

RF 0.53 ± 0.02 0.48 ± 0.02 0.53 ± 0.02 

PLS 0.52 ± 0.05 0.53 ± 0.01 0.42 ± 0.06 
 

Table S3. Cheminformatics descriptors: average R
2
 ± Standard Deviation for the predicted and 

experimental log S values over ten repetitions of the 10-fold cross-validation. 

 

HF Energies learned Scaled by mean / stdev 
± stdev 

Scaled by PCA ± stdev Raw data ± stdev 

SVR 0.46 ± 0.02 0.46 ± 0.02 0.46 ± 0.02 

RF 0.47 ± 0.03 0.5 ± 0.02 0.47 ± 0.03 

PLS 0.36 ± 0.01 0.36 ± 0.02 0.29 ± 0.03 

Table S4. Hartree-Fock energy terms: average R
2
 ± Standard Deviation for the predicted and 

experimental log S values over ten repetitions of the 10-fold cross-validation obtained when Hartree-

Fock energy terms are used as features in machine learning. 

 

y = 1.0786x - 2.3164 
R² = 0.26 
R = 0.51 

bias = -2.56 
RMSE = 4.03 log S units 

Standard deviation = 3.12 
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HF and Descriptors Scaled by mean / stdev 
± stdev 

Scaled by PCA ± stdev Raw data ± stdev 

SVR 0.54 ± 0.03 0.47 ± 0.03 0.44 ± 0.04 
RF 0.56 ± 0.02 0.52 ± 0.01 0.56 ± 0.02 
PLS 0.57 ± 0.04 0.54 ± 0.03 0.35 ± 0.05 

Table S6. Hartree-Fock energy terms and Cheminformatics descriptors: average R
2
 ± Standard 

Deviation for the predicted and experimental log S values over ten repetitions of the 10-fold cross-

validation. 

M062X Energies 
learned 

Scaled by mean / stdev 
± stdev 

Scaled by PCA ± stdev Raw data ± stdev 

SVR 0.45 ± 0.02 0.46 ± 0.02 0.45 ± 0.02 

RF 0.47 ± 0.02 0.4 ± 0.03 0.47 ± 0.02 

PLS 0.35 ± 0.02 0.35 ± 0.02 0.25 ± 0.04 

Table S5. M06-2X: average R
2
 ± Standard Deviation for the predicted and experimental log S values 

over ten repetitions of the 10-fold cross-validation obtained when M06-2X energy terms are used as 

features in machine learning. 

 

M062X and Descriptors Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 0.53 ± 0.02 0.46 ± 0.02 0.43 ± 0.05 

RF 0.57 ± 0.02 0.54 ± 0.01 0.57 ± 0.02 

PLS 0.59 ± 0.02 0.56 ± 0.02 0.35 ± 0.07 
 

Table S7. M06-2X and Cheminformatics descriptors: average R
2
 ± Standard Deviation for the 

predicted and experimental log S values over ten repetitions of the 10-fold cross-validation. 

 

Solubility Challenge Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 0.45 ± 0.02 0.31 ± 0.02 0.39 ± 0.04 

RF 0.56 ± 0.01 0.36 ± 0.02 0.56 ± 0.01 

PLS 0.55 ± 0.02 0.53 ± 0.02 0.33 ± 0.03 
 

Table S9. Solubility Challenge dataset: R
2
 for the calculated against experimental log S values for ten 

repetitions of 10-fold cross-validation using cheminformatics descriptors.  

 

Solubility Challenge  Scaled by mean/stdev Scaled by PCA Raw data 

SVR 0.41 0.39 0.41 
RF 0.50 0.50 0.57 
PLS 0.55 0.55 0.58 

Table S8. Solubility Challenge dataset: R
2
 for the calculated against experimental log S values for the 

original Solubility Challenge training:test split using cheminformatics descriptors. 
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RMSE results 

Informatics Descriptors Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 1.19 ± 0.03 1.25 ± 0.03 1.25 ± 0.06 
RF 1.17 ± 0.03 1.24 ± 0.02 1.17 ± 0.03 
PLS 1.22 ± 0.1 1.19 ± 0.02 1.39 ± 0.1 

 

Table S10. Cheminformatics descriptors: average over ten repetitions of the 10-fold cross-validation 

of RMSE ± Standard Deviation for the predicted and experimental log S values. 

 

HF Energies learned Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 1.25 ± 0.02 1.26 ± 0.02 1.25 ± 0.02 

RF 1.24 ± 0.03 1.21 ± 0.02 1.24 ± 0.03 

PLS 1.37 ± 0.02 1.36 ± 0.02 1.45 ± 0.03 

Table S11. Hartree-Fock energy terms: average over ten repetitions of the 10-fold cross-validation of 

RMSE ± Standard Deviation for the predicted and experimental log S values obtained when HF 

energy terms are used as features in a machine learning model. 

 

HF and Descriptors Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 1.16 ± 0.03 1.25 ± 0.03 1.28 ± 0.05 

RF 1.14 ± 0.02 1.19 ± 0.01 1.14 ± 0.02 

PLS 1.15 ± 0.06 1.18 ± 0.04 1.47 ± 0.08 
 

Table S13.  Hartree-Fock energy terms and Cheminformatics descriptors: average RMSE ± Standard 

Deviation over ten repetitions of the 10-fold cross-validation for the predicted and experimental log S 

values. 

M062X and Descriptors Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 1.17 ± 0.02 1.25 ± 0.02 1.28 ± 0.05 

RF 1.13 ± 0.02 1.17 ± 0.01 1.13 ± 0.02 

PLS 1.11 ± 0.04 1.14 ± 0.03 1.47 ± 0.12 

Table S12. M06-2X energy terms and Cheminformatics descriptors: average over ten repetitions of 

the 10-fold cross-validation of RMSE ± Standard Deviation for the predicted and experimental log S 

values. 
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M062X Energies learned Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 1.26 ± 0.03 1.25 ± 0.03 1.26 ± 0.03 

RF 1.24 ± 0.02 1.32 ± 0.03 1.24 ± 0.02 

PLS 1.37 ± 0.02 1.38 ± 0.04 1.51 ± 0.06 
 

Table S14. M06-2X energy terms: average over ten repetitions of the 10-fold cross-validation of 

RMSE ± Standard Deviation for the predicted and experimental log S values obtained when M06-2X  

energy terms are used as features in a machine learning model. 

 

Solubility Challenge Scaled by mean / stdev ± 
stdev 

Scaled by PCA ± 
stdev 

Raw data ± stdev 

SVR 1.03 ± 0.02 1.15 ± 0.01 1.08 ± 0.04 

RF 0.93 ± 0.01 1.12 ± 0.01 0.93 ± 0.01 

PLS 0.93 ± 0.02 0.95 ± 0.02 1.17 ± 0.04 
 

Table S15. Solubility Challenge dataset: RMSE for the calculated against experimental log S values 

for ten repetitions of 10-fold cross-validation using cheminformatics descriptors.  

 

Solubility Challenge Scaled by mean/stdev Scaled by PCA Raw data 

SVR 1.068 1.083 1.079 

RF 1.032 1.021 0.927 

PLS 0.913 0.913 0.887 

 

Table S16. Solubility Challenge dataset: RMSE for the calculated against experimental log S 

values for the original Solubility Challenge training:test split using cheminformatics 

descriptors.
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Statistical Significance Test 

  Scaled by the mean and standard deviation             

  

     
  Chemoinformatics descriptors   

Partial Least Square 

    

  

 

SVR RF PLS 

  mxd hfd dd hf mx   SVR x     

mxd x           RF 0.13 x   

hfd 0.14 x         PLS 0.18 0.23 x 

dd 0.19 0.06 x       

   

  

hf 0.00 0.02 0.04 x     

   

  

mx 0.00 0.02 0.09 0.20 x   HF + Chemoinformatics Descriptors 

  

     

  

 

SVR RF PLS 

  

     

  SVR x     

Support Vector Regression 

   

  RF 0.12 x   

  mxd hfd dd hf mx   PLS 0.06 0.22 x 

mxd x           

   

  

hfd 0.29 x         

   

  

dd 0.36 0.07 x       MX06-2X + Chemoinformatics Descriptors 

hf 0.03 0.04 0.13 x     

 

SVR RF PLS 

mx 0.05 0.06 0.09 0.37 x   SVR x     

  

     

  RF 0.03 x   

  

     

  PLS 0.16 0.28 x 

Random Forest Regression 

   

  

   

  

  mxd hfd dd hf mx   

   

  

mxd x           HF 

  

  

hfd 0.26 x         

 

SVR RF PLS 

dd 0.02 0.11 x       SVR x     

hf 0.00 0.01 0.01 x     RF 0.25 x   

mx 0.02 0.02 0.07 0.25 x   PLS 0.03 0.01 x 

  

     

  

   

  

  

     
  MX06-2X 

  

  

  

     

  

 

SVR RF PLS 

  

     

  SVR x     

  

     

  RF 0.20 x   

mxd = M06-2X + CHEMOINFORMATICS DESCRIPTORS   PLS 0.03 0.01 x 

hfd = HF + CHEMOINFORMATIC DESCRIPTORS 

 

  

   

  

dd = CHEMOINFORMATICS DESCRIPTORS 

  

  SVR = SUPPORT VECTOR REGRESSION 

hf = HF 

     

  RF = RANDOM FOREST   

mx = MX06-2X           PLS = PARTIAL LEAST SQUARE 

BOX S1: P-value (statistical significance at P =  0.05) of the performance of the RMSE scores for the different regression models for the scaled dataset by 

using mean/stdev. 
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BOX S2: P-value (statistical significance at P = 0.05)  of the performance of the RMSE scores for the different regression models for the scaled dataset by 

Principal Components.

  Principal components                 

  

     

  Chemoinformatics descriptors   

Partial Least Square 

     

  

 

SVR RF PLS 

  mxd hfd dd hf mx   SVR x     

mxd x           RF 0.41 x   

hfd 0.18 x         PLS 0.20 0.23 x 

dd 0.11 0.15 x       

   

  

hf 0.00 0.01 0.01 x     

   

  

mx 0.00 0.02 0.01 0.11 x   HF + Chemoinformatics Descriptors 

  

     

  

 

SVR RF PLS 

  

     

  SVR x     

Support Vector Regression 

   

  RF 0.15 x   

  mxd hfd dd hf mx   PLS 0.13 0.25 x 

mxd x           

   

  

hfd 0.31 x         

   

  

dd 0.23 0.08 x       MX06-2X + Chemoinformatics Descriptors 

hf 0.09 0.19 0.12 x     

 

SVR RF PLS 

mx 0.05 0.16 0.19 0.23 x   SVR x     

  

     

  RF 0.02 x   

  

     

  PLS 0.06 0.08 x 

Random Forest Regression 

   

  

   

  

  mxd hfd dd hf mx   

   

  

mxd x           HF 

  

  

hfd 0.10 x         

 

SVR RF PLS 

dd 0.01 0.08 x       SVR x     

hf 0.19 0.20 0.38 x     RF 0.11 x   

mx 0.01 0.01 0.10 0.07 x   PLS 0.01 0.00 x 

  

     

  

   

  

  

     

  MX60-2X 

  

  

  

     

  

 

SVR RF PLS 

  

     

  SVR x     

  

     

  RF 0.15 x   

mxd = M06-2X + CHEMOINFORMATICS DESCRIPTORS   PLS 0.04 0.26 x 

hfd = HF + CHEMOINFORMATIC DESCRIPTORS 

 

  

   

  

dd = CHEMOINFORMATICS DESCRIPTORS 

  

  SVR = SUPPORT VECTOR REGRESSION 

hf = HF 

     

  RF = RANDOM FOREST   

mx = MX06-2X           PLS = PARTIAL LEAST SQUARE 
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BOX S3: P-value (statistical significance at P = 0.05)  of the performance of the RMSE scores for the different regression models for the row dataset.

  Raw data set                 

  

     

  Chemoinformatics descriptors   

Partial Least Square 

    

  

 

SVR RF PLS 

  mxd hfd dd hf mx   SVR x     

mxd x           RF 0.10 x   

hfd 0.03 x         PLS 0.10 0.05 x 

dd 0.19 0.17 x       

   

  

hf 0.11 0.13 0.21 x     

   

  

mx 0.17 0.24 0.23 0.27 x   HF + Chemoinformatics Descriptors   

  

     

  

 

SVR RF PLS 

  

     

  SVR x     

Support Vector Regression 

    

  RF 0.06 x   

  mxd hfd dd hf mx   PLS 0.07 0.01 x 

mxd x           

   

  

hfd 0.28 x         

   

  

dd 0.24 0.29 x       MX06-2X + Chemoinformatics Descriptors 

hf 0.06 0.22 0.11 x     

 

SVR RF PLS 

mx 0.09 0.14 0.20 0.37 x   SVR x     

  

     

  RF 0.07 x   

  

     

  PLS 0.17 0.02 x 

Random Forest Regression 

    

  

   

  

  mxd hfd dd hf mx   

   

  

mxd x           HF 

  

  

hfd 0.23 x         

 

SVR RF PLS 

dd 0.02 0.16 x       SVR x     

hf 0.01 0.01 0.01 x     RF 0.25 x   

mx 0.02 0.02 0.07 0.25 x   PLS 0.01 0.00 x 

  

     

  

   

  

  

     

  MX60-2X 

  

  

  

     

  

 

SVR RF PLS 

  

     

  SVR x     

  

     

  RF 0.20 x   

mxd = M06-2X + CHEMOINFORMATICS DESCRIPTORS   PLS 0.01 0.01 x 

hfd = HF + CHEMOINFORMATIC DESCRIPTORS 

 

  

   

  

dd = CHEMOINFORMATICS DESCRIPTORS 

  

  
SVR = SUPPORT VECTOR 

REGRESSION 

 

  

hf = HF 

     

  RF = RANDOM FOREST 

 

  

mx = MX06-2X           PLS = PARTIAL LEAST SQUARE   
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Variable Importance 

 

Top 10 variables 

Ranking of variable importance in Random Forest 

Scaled by mean/stdev (stdev) 

Descriptor only Descriptor and HF Descriptor and M06-2X  HF M06-2X 

XLogP XLogP XLogP dG.solv dG.solv 

WTPT.3 WTPT.3 DFT_logS HF_logS dG.solution 

VCH.7 DFT.logS dG.solution dG.solution DFT_logS 

ATSc2 dG.solution WTPT.3 dGsub Srot 

SP.6 VCH.7 VCH.7 Ulatt Strans 

ATSc1 dG.solv dG.solv Scrys Soln energy 

SP.5 ATSc1 ATSc1 Srot Ulatt 

SP.7 SP.6 ATSc2 Strans Scrys 

ATSm4 ATSc2 WTPT.2 Soln energy Gas energy 

ATSm1 WTPT.2 SP.6 Gas energy dGsub 

 

Top 10 variables 

Ranking of variable importance in Random Forest 

Raw data 

Descriptor only Descriptor and HF Descriptor and M06-2X HF M06-2X 

XLogP XLogP XLogP dG.solv dG.solv 

WTPT.3 WTPT.3 dG.solution HF_logS dG.solution 

VCH.7 DFT.logS DFT.logS dG.solution DFT_logS 

ATSc2 dG.solution WTPT.3 dGsub Srot 

ATSc1 VCH.7 dG.solv Ulatt Strans 

SP.6 dG.solv VCH.7 Scrys Soln energy 

SP.5 ATSc1 ATSc1 Srot Ulatt 

ATSm5 ATSc2 ATSc2 Strans Scrys 

ATSm4 SP.6 WTPT.2 Soln energy Gas energy 

SP.7 SP.5 SP.6 Gas energy dGsub 

 

Table S17: Top 10 results of variable importance for different descriptors and dataset. 
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